CHAPTER 3 PROCESS MODELS 101

[HESO1} Hesse, W., “Dinosaur Meets Archaeopteryx? Seven Theses on Rational’s Unified Process
(RUP)," Proc. 8th Intl. Workshop on Evaluation of Modeling Methods in System Analysis and De-
sign, Ch. VII, Interlaken, 2001.

[JAC92} Jacobson, 1., Object-Oriented Software Engineering, Addison-Wesley, 1992.

[JAC99] Jacobson, L., Booch, G., and J. Rumbaugh, The Unified Software Development Process, Ad-
dison-Wesley, 1999.

JAC99] Jacobson, 1., G. Booch, and J. Rumbaugh, The Unified Software Development Process, Ad-
dison-Wesley, 1999.

[KAU95] Kauffman, S., At Home in the Universe, Oxford, 1995.

[KER94] Kerr, }., and R. Hunter, Inside RAD, McGraw-Hill, 1994.

[KIS02] Kiselev, 1., Aspect-Oriented Programming with Aspecyj, Sams Publishers, 2002.

{MAR91] Martin, J., Rapid Application Development, Prentice-Hall, 1991.

[McDE93] McDermid, J., and P. Rook, “Software Development Process Models,” in Software En-
gineer’s Reference Book, CRC Press, 1993, pp. 15/26-15/28.

[MIL87)] Mills, H. D., M. Dyer, and R. Linger, “Cleanroom Software Engineering,” IEEE Software,
September, 1987, pp. 19-25.

[NIE92] Nierstrasz, O., S. Gibbs, and D. Tsichritzis, “Component-Oriented Software Develop-
ment,” CACM, vol. 35, no. 9, September 1992, pp. 160-165.

[NOGO0] Nogueira, J., C. Jones, and Lugi, “Surfing the Edge of Chaos: Applications to Software
Engineering,” Command and Control Research and Technology Symposium, Naval Post
Graduate School, Monterey, CA, June 2000, download from http://www.dodccrp.org/
2000CCRTS/cd/html/pdf_papers/Track_4/075.pdf.

[REE02] Reed, P., Developing Applications with Java and UML, Addison-Wesley, 2002.

{REI95] Reilly, J. P., “Does RAD Live Up to the Hype,” IEEE Software, September 1995, pp. 24-26.

[ROO96] Roos, J., “The Poised Organization: Navigating Effectively on Knowledge Landscapes,”
1996, available at http://www.imd.ch/fac/roos/paper_po.htmi.

{ROY70] Royce, W. W., “Managing the Development of Large Software Systems: Concepts and
Techniques,” Proc. WESCON, August 1970.

[RUM91] Rumbaugh, J., et al., Object-Oriented Modeling and Design, Prentice-Hall, 1991.

[STIO1] Stiller, E., and C. LeBlanc, Project-Based Software Engineering: An Object-Oriented Ap-
proach, Addison-Wesley, 2001.

" [WIR90] Wirfs-Brock, R., B. Wilkerson, and L. Weiner, Designing Object-Oriented Software, Pren-

tice-Hall, 1990.

[YOU94] Yourdon, E., “Software Reuse,” Application Development Strategies, vol. 6, no. 12, De-
cember, 1994, pp. 1-16. :

[YOU95] Yourdon, E., “When Good Enough Is Best,” IEEE Software, vol. 12, no. 3, May 1995,
pp- 79-81.

3.1. Provide three examples of software projects that would be amenable to the incremental
model. Be specific.

3.2. Provide three examples of software projects that would be amenable to the prototyping
maodel. Be specific.

3.3. What process adaptations are required if the prototype will evolve into a deliverable sys-
tem or product?

3.4. To achieve rapid development, the RAD model assumes the existence of one thing. What
is it, and why is the assumption not always true?

3.5. Provide three examples of software projects that would be amenable to the waterfall
model. Be specific.

3.6. Read [NOGO0] and write a two- or three-page paper that discusses the impact of “chaos”
on software engineering.

102

PART ONE THE SOFTWARE PROCESS

3.7. Is it possible to combine process models? If so, provide an example.
3.8. What is the difference between a UP phase and a UP workflow?

3.9. The concurrent process model defines a set of “states.” Describe what these states repre-
sent in your own words, and then indicate how they come into play within the concurrent
process model.

3.10. What are the advantages and disadvantages of developing software in which quality is “good
enough”? That is, what happens when we emphasize development speed over product quality?

3.11. Itis possible to prove that a software component and even an entire program is correct.
So why doesn't everyone do this?

3.12. Provide three examples of software projects that would be amenable to the component-
based model. Be specific.

3.13. Discuss the meaning of “cross-cutting concerns” in your own words. The literature of AOP
is expanding rapidly. Do some research and write a brief paper on the current state-of-the-art.

3.14. Are the Unified Process and UML the same thing? Explain your answer.

3.15. Asyou move outward along the spiral process flow, what can you say about the software
that is being developed or maintained?

Most software engineering textbooks consider prescriptive process models in some detail.
Books by Sommerville (Software Engineering, sixth edition, Addison-Wesley, 2000), Pflecger
(Software Engineering: Theory and Practice, Prentice-Hall, 2001), and Schach (Object-Oriented
and Classical Software Engineering, McGraw-Hill, 2001) consider conventional paradigms and
discuss their strengths and weaknesses. Although not specifically dedicated to process, Brooks
(The Mythical Man-Month, second edition, Addison-Wesley, 1995) presents age-old project wis-
dom that has everything to do with process. Firesmith and Henderson-Sellers (The OPEN Process
Framework: An Introduction, Addison-Wesley, 2001) present a general template for creating
“flexible, yet disciplined software processes” and discuss process attributes and objectives.

Sharpe and McDermott (Workflow Modeling: Tools for Process Improvement and Application De -
velopment, Artech House, 2001) present tools for modeling both software and business
processes. Jacobson, Griss, and Jonsson (Software Reuse, Addison-Wesley, 1997) and McClure
(Software Reuse Techniques, Prentice-Hall, 1997) present much useful information on compo-
nent-based development. Heineman and Council (Component-Based Software Engineering, Addi-
son-Wesley, 2001) describe the process required to implement component-based systems.
Kenett and Baker (Software Process Quality: Management and Control, Marcel Dekker, 1999) con-
sider how quality management and process design are intimately connected to one another.

Ambriola (Software Process Technology, Springer-Verlag, 2001), Derniame and his colleagues
(Software Process: Principles, Methodology, and Technology, Springer-Verlag, 1999), and Gruhn and
Hartmanis (Software Process Technology, Springer-Verlag, 1999) present edited conference pro-
ceedings that cover many research and theoretical issues that are relevant to the software process.

Jacobson, Booch, and Rumbaugh have written the seminal book on the Unified Process JACY9|.
However, books by Arlow and Neustadt [ARL0O2] and a three-volume series by Ambler and Con-
stantine [AMBO2] provide excellent complementary information. Krutchen (The Rational Unified
Process, second edition, Addison-Wesley, 2000) has written a worthwhile introduction to the UP.
Project management within the context of the UP is described in detail by Royce (Software Project
Management: A Unified Framework, Addison-Wesley, 1998). The definitive description of the UP has
been developed by the Rational Corporation and is available on-line at www.rational.com.

A wide variety of information sources on software engineering and the software process are
available on the Internet. An up-to-date list of World Wide Web references that are relevant to
the software process can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS
agile manifesto
ogile modeling
oglity

ogility prindiples
ASD

Crystal

DSDM

Extreme
Progromming

DD

pair programming
politics

refactoring

Scrom

team cheracteristics

AN AGILE VIEW
OF PROCESS

n 2001, Kent Beck and 16 other noted software developers, writers, and con-
sultants [BECO1a] (referred to as the “Agile Alliance”) signed the “Manifesto
for Agile Software Development.” It stated:

We are uncovering better ways of developing software by doing itand helping others
do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

A manifesto is normally associated with an emerging political movement—one
that attacks the old guard and suggests revolutionary change (hopefully for the
better). In some ways, that's exactly what agile development is all about.

Although the underlying ideas that guide agile development have been with
us for many years, it has only been during the past decade that these ideas have
crystallized into a “movement.” In essence, agile' methods were developed in
an effort to overcome perceived and actual weaknesses in conventional soft-
ware engineering. Agile development can provide important benefits, but it is
not applicable to all projects, products, people, and situations. It is also not

1 Agile methods are sometimes referred to as light or lean methods.

103

104

PART ONE THE SOFTWARE PROCESS

antithetical to solid software engineering practice and can be applied as an over-
riding philosophy for all software work.

In the modern economy, it is often difficult or impossible to predict how a
computer-based system (e.g., a Web-based application) will evolve as time passes.
Market conditions change rapidly, end-user needs evolve, and new competitive
threats emerge without warning. In many situations, we no longer are able to define
requirements fully before the project begins. Software engineers must be agile
enough to respond to a fluid business environment.

Does this mean that a recognition of these modern realities causes us to discard
valuable software engineering principles, concepts, methods, and tools? Absolutely
not! Like all engineering disciplines, software engineering continues to evolve. It can
be adapted easily to meet the challenges posed by a demand for agility.

In a thought-provoking book on agile software development, Alistair Cockburn
[COCO2a] argues that the prescriptive process models introduced in Chapter 3 have
a major failing: they forget the failties of the people who build computer software.
Software engineers are not robots. They exhibit great variation in working styles and
significant differences in skill level, creativity, orderliness, consistency, and spon-
taneity. Some communicate well in written form, others do not. Cockburn argues
that process models can “deal with people’s common weaknesses with [either] dis-
cipline or tolerance” [COC02a] and that most prescriptive process models choose
discipline. He states: “Because consistency in action is a human weakness, high dis-
cipline methodologies are fragile” [COCO02a].

If process models are to work, they must provide a realistic mechanism for en-
couraging the discipline that is necessary, or they must be characterized in a man-
ner that shows “tolerance” for the people who do software engineering work.

Invariably, tolerant practi%ﬂgr software people to adopt and sustain, but

/

/

CHAPTER 4 AN AGILE VIEW OF PROCESS 105

(as Cockburn admits) they may be less productive. Like most things in life, trade-offs
must be considered.

CovaP
Don’t make the
mistake of assuming
that agility gives you
license to hack out
solutions. A process is
required, and discipline
is essential.

Just what is agility in the context of software engineering work? Ivar Jacobson
JACO02] provides a useful discussion:

Agility has become today’s buzzword when describing a modern software process. Every-
one is agile. An agile team is a nimble team able to appropriately respond to changes.
Change is what software development is very much about. Changes in the software be-
ing built, changes to the team members, changes because of new technology, changes of
all kinds that may have an impact on the product they build or the project that creates the
product. Support for changes should be built-in everything we do in software, something
we embrace because it is the heart and soul of software. An agile team recognizes that
software is developed by individuals working in teams and that the skills of these people,
their ability to collaborate is at the core for the success of the project.

In Jacobson'’s view, the pervasiveness of change is the primary driver for agility. Soft-
ware engineers must be quick on their feet if they are to accommodate the rapid
changes that Jacobson describes.

pic, condent specific, aggressively chenge embrocing, and growth oriented.

But agility is more than an effective response to change. It also encompasses the
philosophy espoused in the manifesto noted at the beginning of this chapter. It en-
courages team structures and attitudes that make communication (among team
members, between technologists and business people, between software engineers
and their managers) more facile. It emphasizes rapid delivery of operational soft-
ware and de-emphasizes the importance of intermediate work products (not always
a good thing); it adopts the customer as a part of the development team and works
to eliminate the “us and them” attitude that continues to pervade many software
projects; it recognizes that planning in an uncertain world has its limits and that a
project plan must be flexible. '

The Agile Alliance [AGIO3] defines 12 principles for those who want to achieve
agility:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

106 PART ONE THE SOFTWARE PROCESS

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. Atregular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Agility can be applied to any software process. However, to accomplish this, it
is essential that the process be designed in a way that allows the project team to
adapt tasks and to streamline them, conduct planning in a way that understands
the fluidity of an agile development approach, eliminate all but the most essential
work products and keep them lean, and emphasize an incremental delivery strat-
egy that gets working software to the customer as rapidly as feasible for the prod-
uct type and operational environment.

Any agile software process is characterized in a manner that addresses three key as-
sumptions [FOW02] about the majority of software projects:

1. It is difficult to predict in advance which software requirements will persist
and which will change. It is equally difficult to predict how customer priori-
ties will change as a project proceeds.

2. For many types of software, design and construction are interleaved. That is,
both activities should be performed in tandem so that design models are
proven as they are created. It is difficult to predict how much design is neces-
sary before construction is used to prove the design.

3. Analysis, design, construction, and testing are not as predictable (from a
planning point of view) as we might like.

A comprohensive
colloction of oricles on -
the ogile process con

be found ot
wctices/Wex.

Cova$

You don’t have to
choose between agility
and software engr
neering. Instead,
define a software eng-
neering approach that
is agile.

CHAPTER 4 AN AGILE VIEW OF PROCESS 107

Given these three assumptions, an important question arises: How do we create a
process that can manage unpredictability? The answer, as we have already noted,
lies in process adaptability (to rapidly changing project and technical conditions). An
agile process, therefore, must be adaptable.

But continual adaptation without forward progress accomplishes little. Therefore,
an agile software process must adapt incrementally. To accomplish incremental
adaptation, an agile team requires customer feedback (so that the appropriate adap-
tations can be made). An effective catalyst for customer feedback is an operational
prototype or a portion of an operational system. Hence, an incremental development
strategy should be instituted. Software increments (executable prototypes or a portion
of an operational system) must be delivered in short time periods so that adaptation
keeps pace with change (unpredictability). This iterative approach enables the cus-
tomer to evaluate the software increment regularly, provide necessary feedback to
the software team, and influence the process adaptations that are made to accom-
modate the feedback.

4.2.1 The Politics of Agile Development

There is considerable debate (sometimes strident) about the benefits and applicability
of agile software development as opposed to more conventional software engineering
processes. Jim Highsmith [HIGO2a] {facetiously) states the extremes when he charac-
terizes the feeling of the pro-agility camp (“agilists”). “Traditional methodologists are
a bunch of stick-in-the-muds who'd rather produce flawless documentation than a
working system that meets business needs.” As a counterpoint, he states (again, face-
tiously) the position of the traditional software engineering camp: “Lightweight, er,
‘agile’ methodologists are a bunch of glorified hackers who are going to be in for a
heck of a surprise when they try to scale up their toys into enterprise-wide software.”

Like all software technology arguments, this methodology debate risks degener-
ating into a religious war. If warfare breaks out, rational thought disappears and be-
liefs rather than facts guide decision-making.

No one is against agility. The real question is: What is the best way to achieve it?
As important, how do we build software that meets customers’ needs today and ex-
hibits the quality characteristics that will enable it to be extended and scaled to meet
customers’ needs over the long term?

There are no absolute answers to either of these questions. Even within the agile
school itself, there are many proposed process models (Section 4.3), each with a sub-
tly different approach to the agility problem. Within each model there is a set of
“ideas” (agilists are loath to call them “work tasks”) that represent a significant de-
parture from conventional software engineering. And yet, many agile concepts are
simply adaptations of good software engineering concepts. Bottom line: there is

108

What key

traits must
exist among the
people on an
effective software
team?

PART ONE THE SOFTWARE PROCESS

much that can be gained by considering the best of both schools and virtually noth-
ing to be gained by denigrating either approach.

The interested reader should see [HIG01], [HIG02a], and [DEMOQ2] for an enter-
taining summary of the important technical and political issues.

4.2.2 Human Factors

Proponents of agile software development take great pains to emphasize the im-
portance of “people factors” in successful agile development. As Cockburn and
Highsmith [COCO01] state, “Agile development focuses on the talents and skills of
individuals, molding the process to specific people and teams.” The key point in
this statement is that the process molds to the needs of the people and team, not the
other way around.?

ﬂtﬂqumt@nmiseilhuoverlwaﬁdeMmmfﬁdmforW

If members of the software team are to drive the characteristics of the process that
is applied to build software, a number of key traits must exist among the people on
an agile team and the team itself:

Competence. In an agile development (as well as conventional software engi-
neering) context, “competence” encompasses innate talent, specific software re-
lated skills, and overall knowledge of the process that the team has chosen to
apply. Skill and knowledge of process can and should be taught to all people who
serve as agile team members.

Common focus. Although members of the agile team may perform different
tasks and bring different skills to the project, all should be focused on one goal—to
deliver a working software increment to the customer within the time promised. To
achieve this goal, the team will also focus on continual adaptations (small and
large) that will make the process fit the needs of the team.

Collaboration. Software engineering (regardless of process) is about assessing,
analyzing, and using information that is communicated to the software team; cre-
ating information that will help the customer and others understand the work of
the team; and building information (computer software and relevant databases)
that provides business value for the customer. To accomplish these tasks, team
members must collaborate—with one another, with the customer, and with busi-
ness managers.

Decision-making ability. Any good software team (including agile teams)
must be allowed the freedom to control its own destiny. This implies that the

2 Most successful software engineering organizations recognize this reality regardless of the process
model they choose.

[)

o,
POINT

A self-organizing team

is in control of the

work it performs. The

team makes its own

commitments and

defines plans fo

achieve them.

CHAPTER 4 AN AGILE VIEW OF PROCESS 109

team is given autonomy—decision-making authority for both technical and proj-
ect issues.

Fuzzy problem-solving ability. Software managers should recognize that
the agile team will continually have to deal with ambiguity and will continually
be buffeted by change. In some cases, the team must accept the fact that the
problem they are solving today may not be the problem that needs to be solved
tomorrow. However, lessons learned from any problem solving activity (includ-
ing those that solve the wrong problem) may be of benefit to the team later in
the project.

Mutual trust and respect. The agile team must become what DeMarco and
Lister [DEM98] call a “jelled” team (see Chapter 21). A jelled team exhibits the trust
and respect that are necessary to make them “so strongly knit that the whole is
greater than the sum of the parts” [DEM98].

Self-organization. In the context of agile development, self-organization im-
plies three things: (1) the agile team organizes itself for the work to be done; (2) the
team organizes the process to best accommodate its local environment; (3) the
team organizes the work schedule to best achieve delivery of the software incre-
ment. Self-organization has a number of technical benefits, but more importantly it
serves to improve collaboration and boost team morale. In essence, the team
serves as its own management. Ken Schwaber [SCH02] addresses these issues
when he writes: “The team selects how much work it believes it can perform
within the iteration, and the team commits to the work. Nothing demotivates a
team as much as someone else making commitments for it. Nothing motivates a
team as much as accepting the responsibility for fulfilling commitments that it
made itself.”

The history of software engineering is littered with dozens of obsolete process
descriptions and methodologies, modeling methods and notations, tools, and tech-
nology. Each flared in notoriety and was then eclipsed by something new and (pur-
portedly) better. With the introduction of a wide array of agile process models—each
contending for acceptance within the software development community—the agile
movement is following the same historical path.

gh miethodologies like o 14-year-old goes through dothing.”
Stophen Hawrysh

3 This is not a bad thing. Before one or more models or methods are accepted as a de facto standard,
all must contend for the hearts and minds of software engineers. The “winners” evolve into best
practice while the “losers” either disappear or merge with the winning models.

110

PART ONE THE SOFTWARE PROCESS

In the sections that follow, we present an overview of a number of different agile
process models. There are many similarities (in philosophy and practice) among
these approaches. Our intent will be to emphasize those characteristics of each
method that make it unique. It is important to note that all agile models conform (to
a greater or lesser degree) to the Manifesto for Agile Software Development and the
principles noted in Section 4.1.

4.3.1 Extreme Programming (XP)

Although early work on the ideas and methods associated with Extreme Program-
ming (XP) occurred during the late 1980s, the seminal work on the subject, written
by Kent Beck [BEC99] was published in 1999. Subsequent books by Jeffries et al
{JEF01] on the technical details of XP, and additional work by Beck and Fowler
[BECO01b] on XP planning, flesh out the details of the method.

XP uses an object-oriented approach (Part 2 of this book) as its preferred devel-
opment paradigm. XP encompasses a set of rules and practices that occur within the
context of four framework activities: planning, design, coding, and testing. Figure 4.1
illustrates the XP process and notes some of the key ideas and tasks that are associ-
ated with each framework activity. Key XP activities are summarized in the para-
graphs that follow.

Planning. The planning activity begins with the creation of a set of stories (also
called user stories) that describe required features and functionality for software to
be built. Each story (similar to use-cases described in Chapters 7 and 8) is written by
the customer and is placed on an index card. The customer assigns a value (i.e., a

simple design spike solutions
CRC cards prototypes
user stories
values
acceptance fest criteria
iteration plan

refactoring

pair programming

Release :
software increment unit test))
project velocify compufed continuous integration

acceptance testing

AR What is an
XP “story”?

CHAPTER 4 AN AGILE VIEW OF PROCESS 111

priority) to the story based on the overall business value of the feature or function.*
Members of the XP team then assess each story and assign a cost—measured in de-
velopment weeks—to it. If the story will require more than three development weeks,
the customer is asked to split the story into smaller stories, and the assignment of
value and cost occurs again. It is important to note that new stories can be written
at any time.

Customers and the XP team work together to decide how to group stories into the
next release (the next software increment) to be developed by the XP team. Once a
basic commitment (agreement on stories to be included, delivery date, and other
project matters) is made for a release, the XP team orders the stories that will be de-
veloped in one of three ways: (1) all stories will be implemented immediately (within
a few weeks); (2) the stories with highest value will be moved up in the schedule and
implemented first; or (3) the riskiest stories will be moved up in the schedule and im-
plemented first.

After the first project release (also called a software increment) has been deliv-
ered, the XP team computes project velocity. Stated simply, project velocity is the
number of customer stories implemented during the first release. Project velocity can
then be used to (1) help estimate delivery dates and schedule for subsequent
releases, and (2) determine whether an over-commitment has been made for all sto-
ries across the entire development project. If an over-commitment occurs, the con-
tent of releases is modified or end-delivery dates are changed.

As development work proceeds, the customer can add stories, change the value
of an existing story, split stories, or eliminate them. The XP team then reconsiders all
remaining releases and modifies its plans accordingly.

Design. XP design rigorously follows the KIS (keep it simple) principle. A simple de-
sign is always preferred over a more complex representation. In addition, the design
provides implementation guidance for a story as it is written—nothing less, nothing
more. The design of extra functionality (because the developer assumes it will be re-
quired later) is discouraged.®

XP encourages the use of CRC cards (Chapter 8) as an effective mechanism for
thinking about the software in an object-oriented context. CRC (class-responsibility
collaborator) cards identify and organize the object-oriented classes® that are relevant
to the current software increment. The XP team conducts the design exercise using a

4 The value of a story may also depend on the presence of another story.
These design guidelines should be followed in évery software engineering method, although there
are times when sophisticated design notation and terminology may get in the way of simplicity.

6 Object-oriented classes are discussed in detail in Chapter 8 and throughout Part 2 of this book.

112

WebRef

XP.con be obloined ot

What is

pair
programnting?

PART ONE THE SOFTWARE PROCESS

process similar to the one described in Chapter 8 (Section 8.7.4). The CRC cards are
the only design work product produced as part of the XP process.

If a difficult design problem is encountered as part of the design of a story, XP rec-
ommends the immediate creation of an operational prototype of that portion of the
design. Called a spike solution, the design prototype is implemented and evaluated.
The intent is to lower risk when true implementation starts and to validate the orig-
inal estimates for the story containing the design problem.

XP encourages refactoring—a construction technique that is also a design tech-
nique. Fowler [FOWO00} describes refactoring in the following manner:

Refactoring is the process of changing a software system in such a way that it does not
alter the external behavior of the code yet improves the internal structure. It is a disci-
plined way to clean up code [and modify/simplify the internal design} that minimizes the
chances of introducing bugs. In essence, when you refactor you are improving the design
of the code after it has been written.

Because XP design uses virtually no notation and produces few, if any work products
other than CRC cards and spike solutions, design is viewed as a transient artifact that
can and should be continually modified as construction proceeds. The intent of
refactoring is to control these modifications by suggesting small design changes that
“can radically improve the design” [FOWOO]. It should be noted, however, that effort
required for refactoring can grow dramatically as the size of an application grows.

A central notion in XP is that design occurs both before and after coding com-
mences. Refactoring means that design occurs continuously as the system is con-
structed. In fact, the construction activity itself will provide the XP team with
guidance on how to improve the design.

;. Coding. XP recommends that after stories are developed and preliminary design

work is done, the team should not move to code, but rather develop a series of unit
tests that will exercise each of the stories that is to be included in the current release
(software increment).” Once the unit test has been created, the developer is better
able to focus on what must be implemented to pass the unit test. Nothing extrane-
ous is added (KIS). Once the code is complete, it can be unit tested immediately,
thereby providing instantaneous feedback to the developers.

Akey concept during the coding activity (and one of the most talked about aspects
of XP) is pair programming. XP recommends that two people work together at one
computer workstation to create code for a story. This provides a mechanism for real-
time problem solving (two heads are often better than one) and real-time quality as-
surance. It also keeps the developers focused on the problem at hand. In practice,
each person takes on a slightly different role. For example, one person might think
about the coding details of a particular portion of the design while the other ensures

7 This approach is analogous to knowing the exam questions before you begin to study. It makes
studying much easier by focusing attention only on the questions that will be asked.

%,
POINT
XP acceptance tests

ore derived from user
stories.

CHAPTER 4 AN AGILE VIEW OF PROCESS 113

that coding standards (a required part of XP) are being followed and the code that is
generated will “fit” into the broader design for the story.

As pair programmers complete their work, the code they develop is integrated with
the work of others. In some cases this is performed on a daily basis by an integration
team. In other cases, the pair programmers have integration responsibility. This “con-
tinuous integration” strategy helps to avoid compatibility and interfacing problems and
provides a “smoke testing” environment (Chapter 13) that helps to uncover errors early.

Testing. We have already noted that the creation of a unit test® before coding
commences is a key element of the XP approach. The unit tests that are created
should be implemented using a framework that enables them to be automated
(hence, they can be executed easily and repeatedly). This encourages a regression
testing strategy (Chapter 13) whenever code is modified (which is often, given the XP
refactoring philosophy).

As the individual unit tests are organized into a “universal testing suite” [WEL99],
integration and validation testing of the system can occur on a daily basis. This pro-
vides the XP team with a continual indication of progress and also can raise warn-
ing flags early if things are going awry. Wells [WEL99] states: “Fixing small problems
every few hours takes less time than fixing huge problems just before the deadline.”

XP acceptance tests, also called customer tests, are specified by the customer and
focus on overall system features and functionality that are visible and reviewable by
the customer. Acceptance tests are derived from user stories that have been imple-
mented as part of a software release.

SAFEHOME

programmmgb do
cool, Irhmk '

8 Unit testing, discussed in detail in Chapter 13, focuses on an individual software component, exer-
cising the component’s interface, data structures, and functionality in an effort to uncover errors
that are local to the component.

114 i PART ONE THE SOFTWARE PROCESS

Yo meh thot marketing will work on the Dowgs The thing | don' ke i the-way X

4.3.2 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith [HIGOO]
as a technique for building complex software and systems. The philosophical under-
pinnings of ASD focus on human collaboration and team self-organization. High-
smith [HIG98] discusses this when he writes:

Self-organization is a property of complex adaptive systems similar to a collective “aha,”
that moment of creative energy when the solution to some nagging problem emerges.
Self-organization arises when individual, independent agents (cells in a body, species in
an ecosystem, developers in a feature team) cooperate [collaborate] to create emergent
outcomes. An emergent outcome is a property beyond the capability of any individual
agent. For example, individual neurons in the brain do not possess consciousness, but
collectively the property of consciousness emerges. We tend to view this phenomena of
collective emergence as accidental, or at least unruly and undependable. The study of
self-organization is proving that view to be wrong.

Highsmith argues that an agile, adaptive development approach based on collabo-
ration is “as much a source of order in our complex interactions as discipline and en-
gineering.” He defines an ASD “life cycle” (Figure 4.2) that incorporates three phases:
speculation, collaboration, and learning.

Speculation. During speculation, the project is initiated and adaptive cycle planning
is conducted. Adaptive cycle planning uses project initiation information—the cus-
tomer’s mission statement, project constraints (e.g., delivery dates or user descrip-

CHAPTER 4 AN AGILE VIEW OF PROCESS 115

Adaptive
software
development

What are

the
characteristics of
ASD adoptive
cydes?

CovaP

Fffective collaboration
with your customer will
only occur if you
jettison any “us and
them” otfitudes.

adaptive cycle planning Requirements gathering
mission statement JAD
project constraints mini-specs

basic requirements
time-boxed release plan

N\

Release

software increment
adjustments for subsequent cycles

components implemented/tested
focus groups for feedback
formal technical reviews
postmortems

tions), and basic requirements—to define the set of release cycles (software incre-
ments) that will be required for the project.’

Collaboration. Motivated people work together in a way that multiplies their tal-
ent and creative output beyond their absolute numbers. This collaborative approach
is a recurring theme in all agile methods. But collaboration is not easy. It is not sim-
ply communication, although communication is a part of it. It is not only a matter of
teamwork, although a “jelled” team (Chapter 21) is essential for real collaboration to
occur. It is not a rejection of individualism, because individual creativity plays an im-
portant role in collaborative thinking. It is, above all, a matter of trust. People work-
ing together must trust one another to (1) criticize without animosity; (2) assist
without resentment; (3) work as hard or harder as they do; (4) have the skill set to
contribute to the work at hand; and (5) communicate problems or concerns in a way
that leads to effective action.

o v un | hevelorvd a gret ool rom steingcoofully. Mt poope ever .

9 Note that the adaptive cycle plan can and probably will be adapted to changing project and busi-
ness conditions.

116

WebRef
Usaful resources for -
DSDM can be found st

Ausofl overview of
DSDM con be found at

PART ONE THE SOFTWARE PROCESS

Learning. As members of an ASD team begin to develop the components that are
part of an adaptive cycle, the emphasis is on learning as much as it is on progress to-
ward a completed cycle. In fact, Highsmith [HIG00] argues that software developers
often overestimate their own understanding (of the technology, the process, and the
project) and that learning will help them to improve their level of real understand-
ing. ASD teams learn in three ways:

1. Focus groups. The customer and/or end-users provide feedback on soft-
ware increments that are being delivered. This provides a direct indication of
whether or not the product is satisfying business needs.

2. Formal technical reviews. ASD team members review the software com-
ponents that are developed, improving quality and learning as they proceed.

3. Postmortems. The ASD team becomes introspective, addressing its own
performance and process (with the intent of learning and then improving its
approach).

It is important to note that the ASD philosophy has merit regardless of the process
model that is used. ASD’s overall emphasis on the dynamics of self-organizing
teams, interpersonal collaboration, and individual and team learning vield software
project teams that have a much higher likelihood of success.

4.3.3 Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) [STA97] is an agile software devel-
opment approach that “provides a framework for building and maintaining systems
which meet tight time constraints through the use of incremental prototyping in a con-
trolled project environment” [CCS02]. Similar in some respects the RAD process dis-
cussed in Chapter 3, DSDM suggests a philosophy that is borrowed from a modified
version of the Pareto principle. In this case, 80 percent of an application can be delivered
in 20 percent of the time it would take to deliver the complete (100 percent) application.

Like XP and ASD, DSDM suggests an iterative software process. However, the
DSDM approach to each iteration follows the 80 percent rule. That is, only enough
work is required for each increment to facilitate movement to the next increment.
The remaining detail can be completed later when more business requirements are
known or changes have been requested and accommodated.

The DSDM Consortium (www.dsdm.org) is a worldwide group of member com-
panies that collectively take on the role of “keeper” of the method. The consortium
has defined an agile process model, called the DSDM life cycle. The DSDM life cycle
defines three different iterative cycles, preceded by two additional life cycle
activities:

Feasibility study—establishes the basic business requirements and constraints
associated with the application to be built and then assesses whether the applica-
tion is a viable candidate for the DSDM process.

CHAPTER 4 AN AGILE VIEW OF PROCESS 117

Business study—establishes the functional and information requirements that will
allow the application to provide business value; also, defines the basic application
architecture and identifies the maintainability requirements for the application.

Functional model iteration—produces a set of incremental prototypes that
demonstrate functionality for the customer (note: all DSDM prototypes are in-
tended to evolve into the deliverable application). The intent during this iterative
cycle is to gather additional requirements by eliciting feedback from users as they
exercise the prototype.

Design and build iteration—revisits prototypes built during the functional model
iteration to ensure that each has been engineered in a manner that will enable it to
provide operational business value for end-users. In some cases, the functional
model iteration and the design and build iteration occur concurrently.

Implementation—places the latest software increment (an “operationalized” pro-
totype) into the operational environment. It should be noted that (1) the increment
may not be 100 percent complete or (2) changes may be requested as the incre-
ment is put into place. In either case, DSDM development work continues by re-
turning to the function model iteration activity.

DSDM can be combined with XP to provide a combination approach that defines
a solid process model (the DSDM life cycle) with the nuts and bolts practices (XP) that
are required to build software increments. In addition, the ASD concepts of collabo-
ration and self-organizing teams can be adapted to a combined process model.

434 Scrum

Scrum (the name derived from an activity'® that occurs during a rugby match) is an
agile process model that was developed by Jeff Sutherland and his team in the early
1990s. In recent years, further development of the Scrum methods has been per-
formed by Schwaber and Beedle [SCHO1]. Scrum principles [ADM96] are consistent
with the agile manifesto:

« Small working teams are organized to “maximize communication, minimize
overhead, and maximize sharing of tacit, informal knowledge.”

e The process must be adaptable to both technical and business changes “to
ensure the best possible product is produced.”

e The process yields frequent software increments “that can be inspected,
adjusted, tested, documented, and built on.”

« Development work and the people who perform it are partitioned “into clean,
low coupling partitions, or packets.”

e Constant testing and documentation is performed as the product is built.

10 A group of players forms around the ball and the teammates work together {(sometimes violently?)
to move the ball downfield.

118 PART ONE THE SOFTWARE PROCESS

e The Scrum process provides the “ability to declare a product ‘done’ whenever
required (because the competition just shipped, because the company needs
the cash, because the user/customer needs the functions, because that was

when it was promised. . . .” [ADM96].
Scrum principles are used to guide development activities within a process that in-
UskiSown ~ corporates the following framework activities: requirements, analysis, design, evo-
inlormetion ond - lution, and delivery. Within each framework activity, work tasks occur within a
Iy Y,
fesouRees con be
fomdat process pattern (discussed in the following paragraph) called a sprint. The work con-

woweseldmes. ducted within a sprint (the number of sprints required for each framework activity
: will vary depending on product complexity and size) is adapted to the problem at
hand and is defined and often modified in real-time by the Scrum team. The overall
flow of the Scrum process is illustrated in Figure 4.3.

Scrum emphasizes the use of a set of “software process patterns” [NOY02] that have
proven effective for projects with tight timelines, changing requirements, and business
criticality. Each of these process patterns defines a set of development activities:

s oo OCIQ

Sprint Backlog: Backlog

Serum: 15 minute daily meefing.

Team members respond to basics:

1) What did you do since last Scrum
meeting?

2) Do you have any obstacles?

3) What will you do before next

Feature(s) items meeting?
assigned expanded
to sprint by team

New functionality
is demonstrated
at end of sprint

Product Backlog:

Prioritized product features desired by the customer

%

o,
POINT
Scrum incorporates @
set of process patterns
that emphasize project

priorities,
compartmentalized
work units,
communicafion, and
frequent customer
feedback.

CHAPTER 4 AN AGILE VIEW OF PROCESS 119

Backlog—a prioritized list of project requirements or features that provide busi-
ness value for the customer. Items can be added to the backlog at any time (this is
how changes are introduced). The product manager assesses the backlog and up-
dates priorities as required.

Sprints—consist of work units that are required to achieve a requirement de-
fined in the backlog that must be fit into a predefined time-box (typically 30 days).
During the sprint, the backlog items that the sprint work units address are frozen
(i.e., changes are not introduced during the sprint). Hence, the sprint allows team
members to work in a short-term, but stable environment.

Scrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum
team. Three key questions are asked and answered by all team members [NOYO02]:

e What did you do since the last team meeting?
e What obstacles are you encountering?

e What do you plan to accomplish by the next team meeting?

A team leader, called a “Scrum master,” leads the meeting and assesses the re-
sponses from each person. The Scrum meeting helps the team to uncover potential
problems as early as possible. Also, these daily meetings lead to “knowledge so-
cialization” [BEE99] and thereby promote a self-organizing team structure.

Demos—deliver the software increment to the customer so that functionality that
has been implemented can be demonstrated and evaluated by the customer. It is im-
portant to note that the demo may not contain ail planned functionality, but rather
those functions that can be delivered within the time-box that was established.

Beedle and his colleagues [BEE99] present a comprehensive discussion of these pat-
terns in which they state: “SCRUM assumes up-front the existence of chaos. .. . The
Scrum process patterns enable a software development team to work successfully in
a world where the elimination of uncertainty is impossible.

4.3.5 Crystal

Alistair Cockburn [COCO02a] and Jim Highsmith [HIGO2b] created the Crystal family
of agile methods"! in order to achieve a software development approach that puts
a premium on “maneuverability” during what Cockburn characterizes as “a
resource-limited, cooperative game of invention and communication, with a
primary goal of delivering useful, working software and a secondary goal of set-
ting up for the next game” {COC02b].

To achieve maneuverability, Cockburn and Highsmith have defined a set of
methodologies, each with core elements that are common to all, and roles, process

11 The name “crystal” is derived from the characteristics of geological ctystals, each with its own
color, shape, and hardness.

120

ymmsrsme O

discussion of Grystol
can be found ot

A wide varety of -
articles ond
presentations on FDD
con.be found ot

PART ONE THE SOFTWARE PROCESS

patterns, work products, and practice that are unique to each. The Crystal family is
actually a set of agile processes that have been proven effective for different types of
projects. The intent is to allow agile teams to select the member of the crystal fam-
ily that is most appropriate for their project and environment.

4.3.6 Feature Driven Development (FDD)

Feature Driven Development (FDD) was originally conceived by Peter Coad and his
colleagues [COA99] as a practical process model for object-oriented software engi-
neering. Stephen Palmer and John Felsing [PALO2] have extended and enhanced
Coad'’s work, describing an adaptive, agile process that can be applied to moderately
sized and larger software projects.

In the context of FDD, a feature “is a client-valued function that can be imple-
mented in two weeks or less” [COA99]. The emphasis on the definition of features
provides the following benefits:

o Because features are small blocks of deliverable functionality, users can
describe them more easily, understand how they relate to one another more
readily, and better review them for ambiguity, error, or omissions.

o Features can be organized into a hierarchical business-related grouping.

o Since a feature is the FDD deliverable software increment, the team develops
operational features every two weeks.

e Because features are small, their design and code representations are easier
to inspect effectively.

e Project planning, scheduling, and tracking are driven by the feature
hierarchy, rather than an arbitrarily adopted software engineering task set.

Coad and his colleagues [COA99] suggest the following template for defining a feature:
<action> the <result> <by | for | of | to> a(n) <object>

where an <object> is “a person, place, or thing (including roles, moments in time or
intervals of time, or catalog-entry-like descriptions).” Examples of features for an
e-commerce application might be:

Add the product to a shopping cart.

Display the technical-specifications of a product.

Store the shipping-information for a customer.

A feature set groups related features into business-related categories and is defined
[COA99] as:

<action><-ing> a(n) <object>

For example: Making a product sale is a feature set that would encompass the fea-
tures noted earlier and others.

CHAPTER 4 AN AGILE VIEW OF PROCESS 121

Feature Driven
Development
[COA99] (used
with permis-
sion)

information on ogile

modeling con be
found of

ing.com,

]

(more shape Alist of features A development plan A design Completed
than content) grouped info sets Class owners package clientvalue
and subject areas Feature Set Owners (sequences) function

The FDD approach defines five “collaborating” [COA99] framework activities (in
FDD these are called “processes”) as shown in Figure 4.4.

FDD provides greater emphasis on project management guidelines and tech-
niques than many other agile methods. As projects grow in size and complexity, ad
hoc project management is often inadequate. It is essential for developers, their
managers, and the customer to understand project status—what accomplishments
have been made and problems have been encountered. If deadline pressure is sig-
nificant, it is critical to determine if software increments (features) are properly
scheduled. To accomplish this, FDD defines six milestones during the design and im-
plementation of a feature: “design walkthrough, design, design inspection, code,
code inspection, promote to build” {COA99].

4.3.7 Agile Modeling (AM)

There are many situations in which software engineers must build large, business-
critical systems. The scope and complexity of such systems must be modeled so
that (1) all constituencies can better understand what needs to be accomplished;
(2) the problem can be partitioned effectively among the people who must solve
it; and (3) quality can be assessed at every step as the system is being engineered
and built.

Over the past 30 years, a wide variety of software engineering modeling methods
and notation have been proposed for analysis and design (both architectural and
component-level). These methods have significant merit, but they have proven dif-
ficult to apply and challenging to sustain (over many projects). Part of the problem is
the “weight” of these modeling methods. By this we mean the volume of notation re-
quired, the degree of formalism suggested, the size of the models for large projects,
and the difficulty in maintaining the model as changes occur. Yet analysis and design
modeling have substantial benefit for large projects—if for no other reason than to
make these projects intellectually manageable. Is there an agile approach to soft-
ware engineering modeling that might provide an alternative?

122

Gpwcsg

“Traveling light” is an
appropriate philosophy
for all software engi-
neering work. Build
only those models that
provide value—no
more, no less.

PART ONE THE SOFTWARE PROCESS

At “The Official Agile Modeling Site,” Scott Ambler [AMBO2] describes Agile Mod-
eling (AM) in the following manner:

Agile Modeling (AM) is a practice-based methodology for effective modeling and docu-
mentation of software-based systems. Simply put, Agile Modeling is a collection of val-
ues, principles, and practices for modeling software that can be applied on a software
development project in an effective and light-weight manner. Agile models are more ef-
fective than traditional models because they are just barely good, they don't have to be
perfect.

in addition to the values that are consistent with the agile manifesto, Ambler sug-
gests courage and humility. An agile team must have the courage to make decisions
that may cause it to reject a design and refactor. It must have the humility to recog-
nize that technologists do not have all the answers, that business experts and other
stakeholders should be respected and embraced.

Although AM suggests a wide array of “core” and “supplementary” modeling prin-
ciples, those that make AM unique are [AMBO02]:

Model with a purpose. A developer who uses AM should have a specific goal
(e.g., to communicate information to the customer or to help better understand
some aspect of the software) in mind before creating the model. Once the goal for
the model is identified, the type of notation to be used and level of detail required
will be more obvious.

Use multiple models. There are many different models and notations that can be
used to describe software. Only a small subset is essential for most projects. AM
suggests that to provide needed insight, each model should present a different as-
pect of the system and only those models that provide value to their intended audi-
ence should be used.

Travel light. As software engineering work proceeds, keep only those models
that will provide long-term value and jettison the rest. Every work product that is
kept must be maintained as changes occur. This represents work that slows the
team down. Ambler [AMBO02] notes that “every time you decide to keep a model
you trade-off agility for the convenience of having that information available to
your team in an abstract manner (hence potentially enhancing communication
within your team as well as with project stakeholders).”

Content is more important than representation. Modeling should impart informa-
tion to its intended audience. A syntactically perfect model that imparts little useful
content is not as valuable as a mode! with flawed notation that nevertheless pro-
vides valuable content for its audience.

Know the models and the tools you use to create them. Understand the strengths
and weaknesses of each mode! and the tools that are used to create it.

Adapt locally. The modeling approach should be adapted to the needs of the ag-
ile team.

CHAPTER 4 AN AGILE VIEW OF PRCCESS 123

Agile Development

e/

V.’
Q Obijective: The objective of agile development the agile approach. The tools noted below have

tools is fo assist in one or more aspects of agile characteristics that make them particularly useful for
development with an emphasis on facilitating the rapid agile projects.
generation of operational software. These tools can also Actif Extreme, developed by Microtool
be used when prescriptive process models {Chapter 3) are {www.microtool.com), provides agile process
applied. management support for various technical acfivities

within the process.
Mechanics: Tool mechanics vary. In general, agile tool Ideogramic UML, developed by Ideogramic
sets encompass automated support for proiect plcmning, {(www. ideogromic.com], is a UML toolset specifica"y
use-case development and requirements gathering, rapid developed for use within an agile process.
design, code generation, and festing. Together Tool Set, distributed by Borland
{www.borland.com or www.togethersoft.com), provides

Representative Tools:'2 :) S
. . . a tools suite that supports many technical activities
Note: Because agile development is a hot topic, most s .
within XP and other agile processes.

\ software tools vendors purport to sell tools that support /

An agile philosophy for software engineering stresses four key issues: the impor-
tance of self-organizing teams that have control over the work they perform; com-
munication and collaboration between team members and between practitioners
and their customers; a recognition that change represents an opportunity; and an
emphasis on rapid delivery of software that satisfies the customer. Agile process
models have been designed to address each of these issues.

Extreme Programming (XP) is the most widely used agile process. Organized as
four framework activities—planning, design, coding, and testing—XP suggests a
number of innovative and powerful techniques that allow an agile team to create fre-
quent software releases delivering features and functionality that have been de-
scribed and then prioritized by the customer.

Adaptive Software Development (ASD) stresses human collaboration and team
self-organization. Organized as three framework activities-—speculation, collabora-
tion, and learning—ASD uses an iterative process that incorporates adaptive cycle
planning, relatively rigorous requirements gathering methods, and an iterative de-
velopment cycle that incorporates customer focus groups and formal technical re-
views as real-time feedback mechanisms. The Dynamic Systems Development
Method (DSDM) defines three different iterative cycles—functional model ileration,
design and build iteration, and implementation—preceded by two additional life cy-
cle activities—feasibility study and business study. DSDM advocates the use of time-

12 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category -
In most cases, tool names are trademarked by their respective developers.

124

PART ONE THE SOFTWARE PROCESS

box scheduling and suggests that only enough work is required for each software in-
crement to facilitate movement to the next increment.

Scrum emphasizes the use of a set of software process patterns that have
proven effective for projects with tight timelines, changing requirements, and busi-
ness criticality. Each process pattern defines a set of development tasks and allows
the Scrum team to construct a process that is adapted to the needs of the project.

Crystal is a family of agile process models that can be adopted to the specific char-
acteristics of a project. Like other agile approaches, Crystal adopts an iterative strat-
egy but adjusts the rigor of the process to accommodate projects of different sizes
and complexities.

Feature Driven Development (FDD) is somewhat more “formal” than other agile
methods, but still maintains agility by focusing the project team on the development
of features—client-valued functions that can be implemented in two weeks or less.
FDD provides greater emphasis on project and quality management than other agile
approaches. Agile Modeling (AM) suggests that modeling is essential for all systems,
but that the complexity, type, and size of the model must be tuned to the software to
be built. By proposing a set of core and supplementary modeling principles, AM pro-
vides useful guidance for the practitioner during analysis and design tasks.

[ADM96] Advanced Development Methods, Inc., “Origins of Scrum,” 1996, http://www.
controlchaos.com/.

[AGI03] The Agile Alliance Home Page, http://www.agilealliance.org/home.

[AMBO2] Ambler, S., “What Is Agile Modeling (AM)?” 2002, http://www.agilemodeling.com/
index.htm.

[BEC99] Beck, K., Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[BECO1a] Beck, K., et al.,, “Manifesto for Agile Software Development,” http://www.
agilemanifesto. org/.

[BECO1b] Beck, K., and M. Fowler, Planning Extreme Programming, Addison-Wesley, 2001.

[BEE99] Beedle, M., et al., “SCRUM: An extension pattern language for hyperproductive soft-
ware development,” included in: Pattern Languages of Program Design 4, Addison-Wesley
Longman, Reading, MA, 1999. Download at http://jeffsutherland.com/scrum/scrum_
plop.pdf.

[BUS00] Buschmann, F., et al., Pattern-Oriented Software Architecture, 2 volumes, Wiley, 1996, 2000.

[COA99] Coad, P, E. Lefebvre, and J. Del.uca, Java Modeling in Color with UML, Prentice-Hall, 1999.

[COCO01] Cockburn, A., and). Highsmith, “Agile Software Development: The People Factor,” IEEE
Computer, vol. 34, no. 11, November 2001, pp. 131-133.

[COCO02a] Cockburn, A., Agile Software Development, Addison-Wesley, 2002.

[COCO02b] Cockburn, A., “What Is Agile and What Does It Imply?” presented at the Agile Devel-
opment Summit at Westminster College in Salt Lake City, March 2002, http://
crystalmethodologies.org/.

[CCS02] CS3 Consulting Services, 2002, http://www.cs3inc.com/DSDM.htm.

[DEM98] DeMarco, T., and T. Lister, Peopleware, 2nd ed., Dorset House, 1998.

[DEMO2] DeMarco, T., and B. Boehm, “The Agile Methods Fray,” IEEE Computer, vol. 35, no. 6,
June 2002, pp. 90-92.

[FOW00] Fowler, M., et al., Refactoring: Improving the Design of Existing Code, Addison-Wesley, 2000.

[FOWO01] Fowler M., and J. Highsmith, “The Agile Manifesto,” Software Development Magazine,
August 2001, http://www.sdmagazine.com/documents/s=844/ sdm0108a/0108a.htm.

CHAPTER 4 AN AGILE VIEW OF PROCESS 125

[FOWO02] Fowler. M., “The New Methodology,” June 2002, http://www.martinfowler.com/
articles/newMethodology.html#N8B.

[HIG98] Highsmith, J., “Life—The Artificial and the Real,” Software Development, 1998, at
http://www.adaptivesd.com/articles/order.html.

[HIGOO] Highsmith, J., Adaptive Software Development: An Evolutionary Approach to Managing
Complex Systems, Dorset House Publishing, 1998.

[HIGO1] Highsmith,]., ed., “The Great Methodologies Debate: Part 1,” Cutter IT Journal, vol. 14,
no. 12, December 2001.

[HIGO2a] Highsmith, J., ed., “The Great Methodologies Debate: Part 2,” Cutter IT journal, vol. 15,
no. 1, January 2002.

[HIGO2b] Highsmith, J., Agile Software Development Ecosystems, Addison-Wesley, 2002.

[JACO2] Jacobson, L., “A Resounding ‘Yes’ to Agile Processes—But Also More,” Cutter IT Journal,
vol. 15, no. 1., January 2002, pp. 18-24.

JEFO1] Jeffries, R., et al., Extreme Programming Installed, Addison-Wesley, 2001 .

[NOY02] Noyes, B., “Rugby, Anyone?" Managing Development (an on-line publication of
Fawcette Technical Publications), June 2002, http://www.fawcette.com/resources/
managingdev/methodologies/scrum/.

[PALO2] Palmer, S., and). Felsing, A Practical Guide to Feature Driven Development, Prentice-Hall,
2002.

[SCHO1] Schwaber, K., and M. Beedle, Agile Software Development with SCRUM, Prentice-Hall, 2001.

[SCHO2] Schwaber, K., “Agile Processes and Self-Organization,” Agile Alliance, 2002,
http://www.aanpo.org/articles/index.

[STA97] Stapleton, J., DSDM—Dynamic System Development Method: The Method in Practice,
Addison-Wesley, 1997.

[WEL99] Wells, D., “XP—Unit Tests,” 1999, http://www.extremeprogramming.org/ rules/
unittests.html.

4.1. Select one agility principle noted in Section 4.1 and try to determine whether each of the
process models presented in this chapter exhibits the principle.

4.2. Try to come up with one more “agility principle” that would help a software engineering
team become even more maneuverable.

4.3. Could each of the agile processes be described using the generic framework activities
noted in Chapter 2? Build a table that maps the generic activities into the activities defined for
each agile process.

4.4. Why does an iterative process make it easier to manage change? Is every agile process dis-
cussed in this chapter iterative? Is it possible to complete a project in just one iteration and still
be agile? Explain your answers.

4.5. Describe agility (for software projects) in your own words.

4.6. Reread “The Manifesto for Agile Software Development” at the beginning of this chapter.
Can you think of a situation in which one or more of the four “values” could get a software team
into trouble?

4.7. Why do requirements change so much? After all, don‘t people know what they want?

4.8. Most agile process models recommend face-to-face communication. Yet today, members
of a software team and their customers may be geographically separated from one another. Do
you think this implies that geographical separation is something to avoid? Can you think of ways
to overcome this problem?

4.9. Consider the seven traits noted in Section 4.2.2. Order the traits based on your perception
of which is most important to which is least important.

126

PART ONE THE SOFTWARE PROCESS

4.10. Write an XP user story that describes the “favorite places” or “favorites” feature available
on most Web browsers.

4.11. Visit the Official Agile Modeling Site and make a complete list of all core and supple-
mentary AM principles.

4.12. Describe the XP concepts of refactoring and pair programming in your own words.
4.13. Why is Crystal called a family of agile methods?

4.14. Using the process pattern template presented in Chapter 2, develop a process patterns
for any one of the Scrum patterns presented in Section 4.3.4.

4.15. Using the FDD feature template described in Section 4.3.6, define a feature set for a Web
browser. Now develop a set of features for the feature set.

4.16. What is a spike solution in XP?

The overall philosophy and underlying principles of agile software development are considered
in depth in books by Ambler (Agile Modeling, Wiley, 2002), Beck [BEC99], Cockburn [COC02], and
Highsmith [HIGO2b].

Books by Beck [BEC99], Jeffries and his colleagues (Extreme Programming Installed, Addison-
Wesley, 2000), Succi and Marchesi (Extreme Programming Examined, Addison-Wesley, 2001),
Newkirk and Martin (Extreme Programining in Practice, Addison-Wesley, 2001), and Auer and his
colleagues (Extreme Programming Applied: Play to Win, Addison-Wesley, 2001) provide a nuts
and bolts discussion of XP along with guidance on how best to apply it. McBreen (Questioning
Extreme Programming, Addison-Wesley, 2003) takes a critical look at XP, defining when and
where it is appropriate. An in-depth consideration of pair programming is presented by McBreen
(Pair Programming Illuminated, Addison-Wesley, 2003).

Fowler and his colleagues (Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999) address the important XP concept of refactoring in considerable detail. McBreen
(Software Craftsmanship: The New Imperative, Addison-Wesley, 2001) discusses software crafts-
manship and argues for agile alternatives to traditional software engineering

ASD is addressed in depth by Highsmith [HIG00]. A worthwhile treatment of DSDM has been
written by Stapleton (DSDM: The Method in Practice, Addison-Wesley, 1997). Palmer and Felsing
{PALO2] present a detailed treatment of FDD. Carmichael and Haywood (Better Software Faster,
Prentice-Hall, 2002) presents another useful treatment of FDD that includes a step-by-step jour-
ney through the mechanics of the process. Schwaber and his colleagues (Agile Software Devel -
opment with SCRUM, Prentice-Hall, 2001) present a detailed treatment of Scrum.

Martin (Agile Software Development, Prentice-Hall, 2003) discusses agile principles, patterns,
and practices with an emphasis on XP. Poppendieck and Poppendieck (Lean Development: An Ag-
ile Toolkit for Software Development Managers, Addison-Wesley, 2003) provide guidelines for man-
aging and controlling agile projects. Highsmith (Agile Software Development Ecosystems,
Addison-Wesley, 2002) presents a worthwhile survey of agile principles, processes, and practices.

A wide variety of information sources on agile software development are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to the agile process
can be found at the SEPA Web site:
http://www.mhhe.com/ pressman.

SOFTWARE ENGINEERING
~ PRACTICE

you'll learn about the principles, concepts, and methods that
comprise software engineering practice. These questions are
addressed in the chapters that follow:

In this part of Software Engineering: A Practitioner’s Approach

* What concepts and principles gu1de software engmeermg
practice?

* How does system engineering lead to effective software
engineering?
* What is requirements engineering, and what are the underly-
ing concepts that lead to good requxrements an&iysas?
. How isthe analysm model created and what are 1ts elf

'» What is design engineering, and Wha’t are the underiymg con- |
_cepts that lead to good design? *~

~* What concepts, models, and methods are used to create ar-
' chitectural, mterface and component-level designs?

~« ‘What strategxes are applicable to software testmg? iy
. fWhat methods are used to desngn effective test cases? -

i 'x{ :“Wh'at measures and metrics can bé used to assess the quality
f i %a»nalysxs and design models source code, and test cases?

i ane these questxons are answered you'll be better prepared to
: apply software engineering practice. ~

127

SOFTWARE
'ENGINEERING PRACTICE

KEey n a book that explores the lives and thoughts of software engineers, Ellen Ull-
CONCEPTS man [ULL97] depicts a slice of life as she relates the thoughts of practitioner
principles of: under pressure:
oglle modefing I have no idea what time it is. There are no windows in this office and no clock, only
analysis the blinking red LED display of a microwave, which flashes 12:00, 12:00, 12:00, 12:00.
coding Joel and I have been programming for days. We have a bug, a stubborn demon of a
communication bug. So the red pulse no-time feels right, like a read-out of our brains, which have
deployment somehow synchronized themselves at the same blink rate. . . .
desiga What are we working on? . . . The details escape me just now. We may be helping
plansing _ poor sick people or tuning a set of low-level routines to verify bits on a distributed
software database protocol—I don't care. I should care; in another part of my being—later, per-
ongineering haps when we emerge from this room full of computers—I will care very much why
testing and for whom and for what purpose I am writing software. But just now: no. I have
problem solviag passed through a membrane where the real world and its uses no longer matter. I am
WOHH a software engineer. . . .

A dark image of software engineering practice to be sure, but upon reflection,
many of the readers of this book will be able to relate to it.

128

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 129

People who create computer software practice the art or craft or discipline' that is
software engineering. But what is software engineering “practice”? In a generic
sense, practice is a collection of concepts, principles, methods, and tools that a soft-
ware engineer calls upon on a daily basis. Practice allows managers to manage soft-
ware projects and software engineers to build computer programs. Practice populates
a software process model with the necessary technical and management how-to’s to
get the job done. Practice transforms a haphazard unfocused approach into some-
thing that is more organized, more effective, and more likely to achieve success.

A variety of thought- -
provoking quofes on
the pradtice of software
engineering can be
found ot
www.literate

ancs‘

You might argue that
Polya’s approach is
simply common sense.
True. But it's amazing
how often common
sense is uncommon in

the software world.

In Chapter 2, we introduced a generic software process model composed of a set of
activities that establish a framework for software engineering practice. Generic
framework activities—communication, planning, modeling, construction, and
deployment—and umbrella activities establish a skeleton architecture for software
engineering work. All of the software process models presented in Chapters 3 and 4
can be mapped into this skeleton architecture. But how does the practice of software
engineering fit in? In the sections that follow, we consider the generic concepts and
principles that apply to framework activities.?

5.1.1 The Essence of Practice
In a classic book, How to Solve It, written before modern computers existed, George
Polya [POL45] outlined the essence of problem solving, and consequently, the
essence of software engineering practice:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).
3. Carry out the plan (code generation).
4.

Examine the result for accuracy (testing and quality assurance).

1 Some writers argue for one of these terms to the exclusion of the others. In reality, software engi-
neering is all three.

2 The reader is encouraged to revisit relevant sections within this chapter as specific software engi-
neering methods and umbrella activities are discussed later in this book.

130 PART TWO SOFTWARE ENGINEERING PRACTICE

In the context of software engineering, these common sense steps lead to a series of
essential questions [adapted from POL45]:

Understand the problem.
e Who has a stake in the solution to the problem? That is, who are the stake-
holders?
e What are the unknowns? What data, functions, features, and behavior are
required to properly solve the problem?

e Can the problem be compartmentalized? Is it possible to represent smaller
problems that may be easier to understand?

e Can the problem be represented graphically? Can an analysis mode! be
created?

Plan the solution.

e Have you seen similar problems before? Are there patterns that are recogniz-
able in a potential solution? Is there existing software that implements the
data, functions, features, and behavior that are required?

e Has a similar problem been solved? If so, are elements of the solution
reusable?

e Can subproblems be dcfined? If so, are solutions readily apparent for the
subproblems?

e Can you represent a solution in a manner that leads to effective implementation?
Can a design model be created?

Carry out the plan.
e Does the solution conform to the plan? Is source code traceable to the design
model?

e Is each component part of the solution probably correct? Has the design and
code been reviewed, or better, have correctness proofs been applied to the
algorithm?

Examine the result.
e Is it possible to test each component part of the solution? Has a reasonable
testing strategy been implemented?

e Does the solution produce results that conform to the data, functions, features,
and behavior that are required? Has the software been validated against all
stakeholder requirements?

“Thers is @ grain of discovery in the solution of any problem.”

Gsorga Polya.

en'pwcss

Before beginning a
software project, be
sure the software has
@ business purpose and
that users perceive
valve in it

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 131

5.1.2 Core Principles

The dictionary defines the word principle as “an important underlying law or as-
sumption required in a system of thought.” Throughout this book we discuss princi-
ples at many different levels of abstraction. Some focus on software engineering as
a whole, others consider a specific generic framework activity (e.g., customer com-
munication), and still others focus on software engineering actions (e.g., architec-
tural design) or technical tasks (e.g., write a usage scenario). Regardless of their level
of focus, principles help us establish a mind set for solid software engineering prac-
tice. They are important for that reason.

David Hooker [HOO96] has proposed seven core principles that focus on software
engineering practice as a whole. They are reproduced below:?

The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users. All decisions
should be made with this in mind. Before specifying a system requirement, before
noting a piece of system functionality, before determining the hardware platforms or
development processes, ask yourself questions such as: Does this add real value to
the system? If the answer is no, don't do it. All other principles support this one.

The Second Principle: KISS (Keep It Simple, Stupid!)

Software design is not a haphazard process. There are many factors to consider
in any design effort. All design should be as simple as possible, but no simpler. This
facilitates having a more easily understood, and easily maintained system. This is
not to say that features, even internal features, should be discarded in the name of
simplicity. Indeed, the more elegant designs are usually the simple ones. Simple
also does not mean “quick and dirty.” In fact, it often takes a lot of thought and
work over multiple iterations to simplify. The pay-off is software that is more main-
tainable and less error-prone.

"ﬂmas a certain mojesty in simplicity which is far above oll the quaintness of wit.” A il
B Alexander Pope ﬂ“l*ﬂ“} “

The Third Principle: Maintain the Vision

A clear vision Is essential to the success of a software project. Without one, a proj-
ect almost unfailingly ends up being “of two [or more] minds” about itself. Without
conceptual integrity, a system threatens to become a patchwork of incompatible
designs, held together by the wrong kind of screws. . . .

Compromising the architectural vision of a software system weakens and will
eventually break even a well-designed system. Having an empowered architect

3 Reproduced with permission of the author [HOO96]. Hooker defines patterns for these principles
at: http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment.

132

D
o
POINT
If software has value,
it will change over its
useful life. For that
regson, software must
be built to be
maintainable.

PART TWO SOFTWARE ENGINEERING PRACTICE

who can hold the vision and enforce compliance helps ensure a very successful
software project.

The Fourth Principle: What You Produce, Others Will Consume
Seldom is an industrial-strength software system constructed and used in a vac-
uum. In some way or other, someone else will use, maintain, document, or other-

wise depend on being able to understand your system. So, always specify, design,
and implement knowing someone else will have to understand what you are doing.

" The audience for any product of software development is potentially large. Specify

with an eye to the users. Design, keeping the implementers in mind. Code with
concern for those who must maintain and extend the system. Someone may have
to debug the code you write, and that makes them a user of your code. Making
their job easier adds value to the system.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. In today’s computing environ-
ments, where specifications change on a moment'’s notice and hardware platforms
are obsolete after just a few months, software lifetimes are typically measured in
months instead of years. However, true “industrial-strength” software systems
must endure far longer. To do this successfully, these systems must be ready to
adapt to these and other changes. Systems that do this successfully are those that
have been designed this way from the start. Never design yourself into a corner. Al-
ways ask “what if,” and prepare for all possible answers by creating systems that
solve the general problem, not just the specific one.* This could very possibly lead
to the reuse of an entire system.

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort.® Achieving a high level of reuse is arguably the
hardest goal to accomplish in developing a software system. The reuse of code and
designs has been proclaimed as a major benefit of using object-oriented technolo-
gies. However, the return on this investment is not automatic. To leverage the
reuse possibilities that object-oriented [or conventional] programming provides re-
quires forethought and planning. There are many techniques to realize reuse at
every level of the system development process. Those at the detailed design and
code level are well known and documented. New literature is addressing the reuse
of design in the form of software patterns. However, this is just part of the battle.

4 Author’s note: This advice can be dangerous if it is taken to extremes. Designing for the “general
problem” sometimes requires performance compromises and can require more project effort.

5 Author’s note: Although this is true for those who reuse the software on future projects, reuse can
be expensive for those who must design and build reusable components. Studies indicate that de-
signing and building reusable components can cost between 25 to 200 percent more than targeted
software. In some cases, the cost differential cannot be justified.

ﬁpwcs‘

Before communicating
be sure you under-
stand the point of view
of the other party,
know a bit about his or
her needs, and then
listen.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 133

Communicating opportunities for reuse to others in the organization is paramount.
How can you reuse something that you don’t know exists? Planning ahead for reuse
reduces the cost and increases the value of both the reusable components and the sys-
tems into which they are incorporated.

The Seventh Principle: Think!

This last Principle is probably the most overlooked. Placing clear, complete
thought before action almost always produces better results. When you think about
something, you are more likely to do it right. You also gain knowledge about
how to do it right again. If you do think about something and still do it wrong, it
becomes valuable experience. A side effect of thinking is learning to recognize
when you don’t know something, at which point you can research the answer.
When clear thought has gone into a system, value comes out. Applying the first
six Principles requires intense thought, for which the potential rewards are
enormous.

If every software engineer and every software team simply followed Hooker’s seven
principles, many of the difficulties we experience in building complex computer-
based systems would be eliminated.

Before customer requirements can be analyzed, modeled, or specified they must be
gathered through a communication (also called requirements €licitation) activity. A
customer has a problem that may be amenable to a computer-based solution. A de-
veloper responds to the customer'’s request for help. Communication has begun. But
the road from communication to understanding is often full of potholes.

Effective communication (among technical peers, with the customer and other
stakeholders, and with project managers) is among the most challenging activities
that confront a software engineer. In this context, we discuss communication prin-
ciples and concepts as they apply to customer communication. However, many of
the principles apply equally to all forms of communication that occur within a soft-

- ware project.

Principle #1: Listen. Try to focus on the speaker’s words, rather than formu-
lating your response to those words. Ask for clarification if something is unclear,
but avoid constant interruptions. Never become contentious in your words or ac-
tions (e.g., rolling your eyes or shaking your head) as a person is talking.

Principle #2: Prepare before you communicate. Spend the time to under-
stand the problem before you meet with others. If necessary, do some research to
understand business domain jargon. If you have responsibility for conducting a
meeting, prepare an agenda in advance of the meeting.

134 PART TWO SOFTWARE ENGINEERING PRACTICE

Principle #3: Someone should facilitate the activity. Every communication
meeting should have a leader (facilitator) to keep the conversation moving in a
productive direction; (2) to mediate any conflict that does occur; (3) to ensure than
other principles are followed.

Principle #4: Face-to-face communication is best. But it usually works bet-
ter when some other representation of the relevant information is present. For ex-
ample, a participant may create a drawing or a “strawman” document that serves
as a focus for discussion.

md phm answers make the shorfest road to most perplexifies.”

Principle #5: Take notes and document decisions. Things have a way of
falling into the cracks. Someone participating in the communication should serve
as a “recorder” and write down all important points and decisions.

Principle #6: Strive for collaboration. Collaboration and consensus occur
when the collective knowledge of members of the team is combined to describe
product or system functions or features. Each small collaboration serves to build
trust among team members and creates a common goal for the team.

Principle #7: Stay focused, modularize your discussion. The more people
involved in any communication, the more likely that discussion will bounce from
one topic to the next. The facilitator should keep the conversation modular, leaving
one topic only after it has been resolved (however, see Principle #9)

The Difference Between Customers and End-Users

Software engineers communicate with many basic product requirements; and (4) coordinates funding
different stakeholders, but customers and end- for the project. In a product or system business, the

users have the most significant impact on the technical customer is often the marketing department. In an IT

work that follows. In some cases the customer and the end- environment, the customer might be a business component

user are one in the same, but for many projects, the or department.

customer and the end-user are different people, working An end-user is the person or group who: (1} will

for different managers in different business organizations. . actually use the software that is built to achieve some

A customer is the person or group who: {1) originally business purpose, and (2) will define operational
requested the software to be built; (2) defines overall details of the software so the business purpose can be
(usiness objectives for the software; (3) provides achieved. j

Principle #8: If something is unclear, draw a picture. Verbal communica-
tion goes only so far. A sketch or drawing can often provide clarity when words fail
to do the job.

Principle #9: (a) Once you agree to sqmething, move on; (b) If you can’t
agree to something, move on; (c) If a feature or function is unclear and can-

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 135

not be clarified at the moment, move on. Communication, like any software
engineering activity, takes time. Rather than iterating endlessly, the people who
can’t come fo an participate should recognize that many topics require discussion (see Principle #2)

agreement with 55 5 “moving on” is sometimes the best way to achieve communication agility.
the customer on

some project- Principle #10: Negotiation is not a contest or a game. It works best when

related issve? both parties win. There are many instances in which the software engineer and
the customer must negotiate functions and features, priorities, and delivery dates.
If the team has collaborated well, all parties have a common goal. Therefore, nego-
tiation will demand compromise from all parties.

mmunication Mistakes .
: Software engineering Vinod: What does that

e (Jamie shrugs.)
Jamie Lazar, software team me‘f‘be'i Vinod: That marketing will need
er team member; Ed Robbins and that we'd better do some hor
- . area before our kick-off m
wanted us fo “collaborate” w

youfneurd about this SafeHome projectz better learn how to do that.]

-off meefing is scheduled for next week. E:: Probably y.,lz,id },3:
i g‘liiﬂa bit of investigation, but office. Phone calls just.don'ts

thing.
bt Jamie: You're both right. We've gof o
£ , together or our early communication
.f'ffm:;;:;:;z”am“.s}msﬁwe Vinod: | s i

engineering.” I'll bet that lists some:

B communication. I'm going to borrow

bad her.io tell me about SafeHome features Jamie: Good idea . . . then you ¢t
sort of thing. Instead, she began . Lt

sestions about security systems, surveillance Vinod (smiling}: Yeuh,righ!

'm no expert. o

Generic Task Set for Communication

1. Identify primary customer and other
stakeholders {Section 7.3.1).

2. Meet with primary customer to
address “context free questions”
(Section 7.3.4) that defines

Business need and business values.
End-users’ characteristics/needs.
Required user-visible outputs.
Business constraints.

136 PART TWO SOFTWARE ENGINEERING PRACTICE

3. Develop a one-page written statement of project scope 6. Develop a brief written description {e.g., a set of

that is subject fo revision (Sections 7.4.1 and 21.3.1). lists) of scenarios, output/inputs, features/functions
4. Review statement of scope with stakeholders and and risks.

amend as required. 7. lterate with customer to refine scenarios,
5. Collaborate with customer/end-users to define: output/inputs, features/functions and risks.

8. Assign customer-defined priorities to each user

tomer visibl nari i . . .
o Customer visible usage scenarios using standard scenario, feature, function, and behavior.

format® (Section 7.5).

(Section 7.4.2).
o Resulting outputs and inputs. 9. Review dll information gathered during the
o Important software features, functions, and communication activity with the customer and other
behavior. stakeholders and amend as required.
\ e Customer-defined business risks (Section 25.3). 10. Prepare for planning activity (Chapters 23 and 24)'/

The communication activity helps a software team to define its overall goals and
objectives (subject, of course, to change as time passes). However, understanding
these goals and objectives is not the same as defining a plan for getting there. The
planning activity encompasses a set of management and technical practices that en-
able the software team to define a road map as it travels toward its strategic goal
and tactical objectives.

battle 1 have olways found that plans are useless, but plonning is indispensable.”
5 ~ Dwight D. Bs

There are many different planning philosophies. Some people are “minimalists,”
arguing that change often obviates the need for a detailed plan. Others are “tradi-
tionalists,” arguing that the plan provides an effective road map, and the more detail
it has, the less likely the team will become lost. Still others are “agilists,” arguing that
a quick "planning game” may be necessary, but that the road map will emerge as
“real work” on the software begins.

What to do? On many projects, overplanning is time consuming and fruitless (too
many things change), but underplanning is a recipe for chaos. Like most things in
life, planning should be conducted in moderation, enough to provide useful guidance

for the team—no more, no less.

glml m Regardless of the rigor with which planning is conducted, the following principles
manggement always apply.

information can be

found ot Principle #1: Understand the scope of the project. It's impossible to use a

www.Apm.com/ road map if you don't know where you're going. Scope provides the software team
spositorybim. with a destination.

6 Formats for usage scenarios are discussed in Chapter 8.

7
Ne,

POINT
The term granularity
refers to the detail with
which some element of
planning is represented
o conducted.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 137

Principle #2: Involve the customer in the planning activity. The customer
defines priorities and establishes project constraints. To accommodate these reali-
ties, software engineers must often negotiate order of delivery, timelines, and other
project related issues.

Principle #3: Recognize that planning is iterative. A project plan is never
engraved in stone. As work begins, it is very likely that things will change. As a
consequence, the plan must be adjusted to accommodate these changes. In addi-
tion, iterative, incremental process models dictate replanning (after the delivery of
each software increment) based on feedback received from users.

Principle #4: Estimate based on what you know. The intent of estimation is
to provide an indication of effort, cost, and task duration, based on the team'’s cur-
rent understanding of the work to be done. If information is vague or unreliable,
estimates will be equally unreliable.

Principle #5: Consider risk as you define the plan. If the team has defined
risks that have high impact and high probability, contingency planning is neces-
sary. In addition, the project plan (including the schedule) should be adjusted to ac-
commodate the likelihood that one or more of these risks will occur.

Principle #6: Be realistic. People don't work 100 percent of every day. Noise
always enters into any human communication. Omissions and ambiguity are facts
of life. Change will occur. Even the best software engineers make mistakes. These
and other realities should be considered as a project plan is established.

”sncmw more a funciion of consistent common sense than it is of genius.”

P >

Principle #7: Adjust granularity as you define the plan. Granularity refers
to the level of detail that is introduced as a project plan is developed. A “fine gran-
ularity” plan provides significant work task detail that is planned over relatively
short time increments (so that tracking and control occur frequently). A “coarse
granularity” plan provides broader work tasks that are planned over longer time
periods. In general, granularity moves from fine to coarse as the project timeline
moves away from the current date. Over the next few weeks or months, the project
can be planned in significant detail. Activities that won't occur for many months do
not require fine granularity (too much can change).

Principle #8: Define how you intend to ensure quality. The plan should
identify how the software team intends to ensure quality. If formal technical re-
views’ are to be conducted, they should be scheduled. Ifbpair programming
(Chapter 4) is to be used during construction, it should be explicitly defined within
the plan.

7 Formal technical reviews are discussed in Chapter 26.

138

% What
questions
must be asked
and answered to

develop a realistic
project plan?

PART TWO SOFTWARE ENGINEERING PRACTICE

Principle #9: Describe how you intend to accommodate change. Even the
best planning can be obviated by uncontrolled change. The software team should
identify how changes are to be accommodated as software engineering work pro-
ceeds. For example, can the customer request a change at any time? If a change is
requested, is the team obliged to implement it immediately? How is the impact and
cost of the change assessed?

Principle #10: Track the plan frequently and make adjustments as re-
quired. Software projects fall behind schedule one day at a time. Therefore, it
makes sense to track progress on a daily basis, looking for problem areas and situ-
ations in which scheduled work does not conform to actual work conducted. When
slippage is encountered, the plan is adjusted accordingly.

To be most effective, everyone on the software team should participate in the plan-
ning activity. Only then will team members “sign up” to the plan.

In an excellent paper on software process and projects, Barry Boehm [BOE96]
states: “You need an organizing principle that scales down to provide simple [proj-
ect] plans for simple projects.” Boehm suggests an approach that addresses project
objectives, milestones and schedules, responsibilities, management and technical
approaches, and required resources. He calls it the W°HH principle, after a series of
questions that lead to a definition of key project characteristics and the resultant
project plan:

Why is the system being developed? All parties should assess the validity of
business reasons for the software work. Stated in another way, does the business
purpose justify the expenditure of people, time, and money?

What will be done? Identify the functionality to be built, and by implication,
the tasks required to get the job done.

When will it be accomplished? Establish a workflow and timeline for key
project tasks and identify the milestones required by the customer.

Who is responsible for a function? The role and responsibility of each mem-
ber of the software team must be defined.

Where are they organizationally located? Not all roles and responsibilities
reside within the software team itself. The customer, users, and other stakeholders
also have responsibilities.

How will the job be done technically and managerially? Once product
scope is established, a management and technical strategy for the project must be
defined.

How much of each resource is needed? The answer to this question is de-
rived by developing estimates (Chapter 23) based on answers to earlier questions.

The answers to Boehm’'s WHH questions are important regardless of the size or
complexity of a software project. But how does the planning process begin?

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 139

1 software developers are missing a vital ruth: most organizations don’t know whet ﬁu'rda
h‘l ﬁey don't know.”

Generic Task Set for Planning
1. Reevaluate project scope (Sections 8. Create a fine granularity plan for the current
7.4 and 21.3). iteration (Chapters 23 and 24).
2. Assess risks {Section 25.4). Define work tasks for each function feature
3. Develop and/or refine user scenarios {Sections 7.5 (Section 23.6).
and 8.5). Estimate effort for each work task (Section 23.4).
4. Extract functions and features from the scenarios Assign responsibility for each work task
(Section 8.5). (Section 23.4).
5. Define technical functions and features that enable Define work products to be produced.
software infrastructure . ' Identify quality assurance methods to be used
6. Group functions and features (scenarios) by (Chapter 26).
customer priority Describe methods for managing change
7. Create a coarse granularity project plan (Chapters (Chapter 27).
23 and 24). 9. Track progress regularly (Section 24.5.2).
Define the number of projected software Note problem areas (e.g., schedule slippage).
increments. Make adjustments as required.
Establish an overall project schedule (Chapter 24).
Establish projected delivery dates for each

\ increment. /

We create models to gain a better understanding of the actual entity to be built. When
the entity is a physical thing (e.g., a building, a plane, a machine), we can build a model
that is identical in form and shape but smaller in scale. However, when the entity is
software, our model must take a different form. It must be capable of representing the
information that software transforms, the architecture and functions that enable
the transformation to occur, the features that the users desires, and the behavior of the
system as the transformation is taking place. Models must accomplish these objectives
at different levels of abstraction—first depicting the software from the customer’s

[) . . .
% viewpoint and later representing the software at a more technical level.

POINT In software engineering work, two classes of models are created: analysis
Analysis models models and design models. Analysis models represent the customer requirements
represent customer by depicting the software in three different domains: the information domain, the

reqzir{ementi.j Desig" functional domain, and the behavioral domain. Design models represent charac-
modaets provide a

P teristics of the software that help practitioners to construct it effectively: the archi-
concrete specification) PP y
for the construction of ~ LECture (Chapter 10), the user interface (Chapter 12), and component-level detail
the sofiware. (Chapter 11).

140

[S
o
POINT
Analysis modeling
focuses on three
attributes of software:
information fo be
processed, function to
be delivered, and
behavior to be
exhibited.

PART TWO SOFTWARE ENGINEERING PRACTICE

In the sections that follow we present basic principles and concepts that are rel-
evant to analysis and design modeling. The technical methods and notation that al-
low software engineers to create analysis and design models are presented in later
chapters.

or's first problem in any design situation is fo discover what the problem really is.”

5.4.1 Analysis Modeling Principles

Over the past three decades, a large number of analysis modeling methods have
been developed. Investigators have identified analysis problems and their causes
and have developed a variety of modeling notations and corresponding sets of
heuristics to overcome them. Each analysis method has a unique point of view. How-
ever, all analysis methods are related by a set of operational principles:

Principle #1: The information domain of a problem must be represented
and understood. The information domain encompasses the data that flow into the
system (from end-users, other systems, or external devices), the data that flow out
of the system (via the user interface, network interfaces, reports, graphics, and
other means) and the data stores that collect and organize persistent data objects
(i.e., data that are maintained permanently).

Principle #2: The functions that the software performs must be defined.
Software functions provide direct benefit to end-users and also provide internal
support for those features that are user visible. Some functions transform data
that flow into the system. In other cases, functions effect some level of control
over internal software processing or external system elements. Functions can be
described at many different levels of abstraction, ranging from a general state-
ment of purpose to a detailed description of the processing elements that must be
invoked.

Principle #3: The behavior of the software (as a consequence of external
events) must be represented. The behavior of computer software is driven by its
interaction with the external environment. Input provided by end-users, control
data provided by an external system, or monitoring data collected over a network
all cause the software to behave in a specific way.

Principle #4: The models that depict information, function, and behavior
must be partitioned in a manner that uncovers detail in a layered (or hierar-
chical) fashion. Analysis modeling is the first step in software engineering problem
solving. It allows the practitioner to better understand the problem and establishes a
basis for the solution (design). Complex problems are difficult to solve in their entirety.
For this reason, we use a divide and conquer strategy. A large, complex problem is di-
vided into subproblems until each subproblem is relatively easy to understand. This
concept is called partitioning, and it is a key strategy in analysis modeling.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 141

Principle #5: The analysis task should move from essential information
toward implementation detail. Analysis modeling begins by describing the prob-
lem from the end-user’s perspective. The “essence” of the problem is described
without any consideration of how a solution will be implemented. For example, a
video game requires that the player “instruct” its protagonist on what direction to
proceed as she moves into a dangerous maze. That is the essence of the problem.
Implementation detail (normally described as part of the design model) indicates
how the essence will be implemented. For the video game, voice input might be
used. Alternatively, a keyboard command might be typed or a joystick (or mouse)
might be pointed in a specific direction.

Generic Task Set for Analysis Modeling

1. Review business requirements, end- Refine functions to provide elaborative detail.
users’ characteristics/needs, user- Write a processing narrative that describes each
visible outputs, business constraints, function and subfunction.

and other technical requirements that were determined Review the functional models (Section 26.4).
during the customer communication and planning 5. Model the behavioral domain (Section 8.8).
activities. Identify external events that cause behavioral
2. Expand and refine user scenarios (Section 8.5). changes within the system.
Define all actors. identify states that represent each externally
Represent how actors interact with the sofiware. observable mode of behavior.
Extract functions and features from the user Depict how an event causes the system to move
scenarios. from one state to another.
Review the user scenarios for completeness and Review the behavioral models (Section 26.4).
accuracy (Section 26.4). 6. Andlyze and model the user interface (Chapter 12).
3. Model the information domain (Section 8.3). Conduct task analysis.
Represent all major information objects. Create screen image prototypes.
Define attributes for each information object. 7. Review all models for completeness, consistency and
Represent the relationships between information omissions. '
obijects.
4. Model the functional domain (Section 8.6).
\ Show how functions modify data objects. /

5.4.2 Design Modeling Principles

The software design model is the equivalent of an architect’s plans for a house. It be-
gins by representing the totality of the thing to be built (e.g., a three-dimensional ren-
dering of the house) and slowly refines the thing to provide guidance for constructing
each detail (e.g., the plumbing layout). Similarly, the design model that is created for
software provides a variety of different views of the system.

. “See frst that the design is wise and just: that ascertained, pursue it resolutely; do not for one repulse forego the

. purpose that you resolved 1o effed.” ’

142

Insighiful comments on
the design process,
along with a discussion
of design cesthetics,
can be found ot
cs.wwe.ods/
~aobyon/
Design/.

PART TWO SOFTWARE ENGINEERING PRACTICE

There is no shortage of methods for deriving the various elements of a software
design. Some methods are data-driven, allowing the data structure to dictate the
program architecture and the resultant processing components. Others are pattern-
driven, using information about the problem domain (the analysis model) to develop
architectural styles and processing patterns. Still others are object-oriented, using
problem domain objects as the driver for the creation of data structures and the
methods that manipulate them. Yet all embrace a set of design principles that can be
applied regardless of the method that is used:

Principle #1: Design should be traceable to the analysis model. The analy-
sis model describes the information domain of the problem, user visible functions,
system behavior, and a set of analysis classes that package business objects with
the methods that service them. The design model translates this information into
an architecture: a set of subsystems that implement major functions, and a set of
component-level designs that are the realization of analysis classes. With the ex-
ception of design associated with the software infrastructure, the elements of the
design mode] should be traceable to the analysis model.

Principle #2: Always consider the architecture of the system to be built.
Software architecture (Chapter 10) is the skeleton of the system to be built. It af-
fects interfaces, data structures, program control flow and behavior, the manner in
which testing can be conducted, the maintainability of the resultant system, and
much more. For all of these reasons, design should start with architectural consid-
erations. Only after the architecture has been established should component-level
issues be considered.

Principle #3: Design of data is as important as design of processing func-
tions. Data design is an essential element of architectural design. The manner in
which data objects are realized within the design cannot be left to chance. A well-
structured data design helps to simplify program flow, makes the design and imple-
mentation of software components easier, and makes overall processing more
efficient.

Principle #4: Interfaces (both internal and external) must be designed
with care. The manner in which data flows between the components of a system
has much to do with processing efficiency, error propagatior{, and design simplic-
ity. A well-designed interface makes integration easier and assists the tester in val-
idating component functions.

Principle #5: User interface design should be tuned to the needs of the
end-user. However, in every case, it should stress ease of use. The user interface is
the visible manifestation of the software. No matter how sophisticated its internal
functions, no matter how comprehensive its data structures, no matter how well-
designed its architecture, a poor interface design often leads to the perception that
the software is “bad.”

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 143

Principle #6: Component-level design should be functionally independ-
ent. Functional independence is a measure of the “single-mindedness” of a soft-
ware component. The functionality that is delivered by a component should be
cohesive—that is, it should focus on one and only one function or subfunction.®

Principle #7: Components should be loosely coupled to one another and
to the external environment. Coupling is achieved in many ways—via a compo-
nent interface, by messaging, through global data. As the level of coupling in-
creases, the likelihood or error propagation also increases and the overall
maintainability of the software decreases. Therefore, component coupling should
be kept as low as is reasonable.

Principle #8: Design representations (models) should be easily under-
standable. The purpose of design is to communicate information to practitioners
who will generate code, to those who will test the software, and to others who
may maintain the software in the future. If the design is difficult to understand, it
will not serve as an effective communication medium.

Principle #9: The design should be developed iteratively. With each itera-
tion, the designer should strive for greater simplicity. Like almost all creative
activities, design occurs iteratively. The first iterations work to refine the design
and correct errors, but later iterations should strive to make the design as simple
as is possible.

When these design principles are properly applied, the software engineer creates a de-
sign that exhibits both external and internal quality factors. External quality factors are
those properties of the software that can be readily observed by users (e.g., speed, reli-
ability, correctness, usability). Internal quality factors are of importance to software engi-
neers. They lead to a high-quality design from the technical perspective. To achieve
internal quality factors, the designer must understand basic design concepts (Chapter 9).

.

Agile Modeling

In his book on agile modeling, Scott Ambler Principle #2: Travel light—don’t create more models than
* [AMBO2] defines a set of principles’ that are you need.
applicable when analysis and design are conducted within Principle #3: Strive to produce the simplest model that will
the context of the agi|e software deve|opment phi|osop|'\y describe the prob|em or the software.
(Chapter 4): Principle #4: Build models in a way that makes them

amenable to change.
Principle #1: The primary goal of the software team is to Principle #5: Be able fo state an explicit purpose for each
\ build software, not create models. model that is created.)

8 Additional discussion of cohesion can be found in Chapter 9.
9 The principles noted in this section have been abbreviated and rephrased for the purposes of this
book.

144 PART TWO SOFTWARE ENGINEERING PRACTICE

N\

Principle #6: Adapt the models you develop to the system Principle #10: Get feedback as soon as you can.

at hand. .
Principle #7: Try to build useful models, but forget about R.e.gordless of the process mode‘l that is chosen or the
building perfect models. specific software engineering practices that are applied,

every software team wants to be agile. Therefore, these
principles can and should be applied regardless of the

software process model that is chosen.

Principle #8: Don’t become dogmatic about the syntax of
the model. If it communicates content successfully,
representation is secondary.

Principle #9: If your instincts tell you a model isn't right
even though it seems okay on paper, you probably

\ have reason fo be concerned, /

Generic Task Set for Design

1. Using the analysis model, select an Review results of task andlysis.
architectural style {pattern) that is Specify action sequence based on user
appropriate for the software scenarios.
{Chapter 10). Create behavioral model of the interface.
2. Partition the analysis mode! into design subsystems Define interface objects, control mechanisms.
and allocate these subsystems within the architecture Review the interface design and revise as required
{Chapter 10). (Section 26.4).
Be certain that each subsystem is functionally 4. Conduct component-level design (Chapter 11).
cohesive. Specify all algorithms at a relatively low level of
Design subsystem interfaces. abstraction.
Allocate analysis classes or functions to each Refine the interface of each component.
subsystem. Define component level data structures.
Using the information domain model, design Review the component level design
appropriate data structures. (Section 26.4).
kB. Design the user interface (Chapter 12). 5. Develop a deployment model (Section 9.4.5). /

The construction activity encompasses a set of coding and testing tasks that lead to
operational software that is ready for delivery to the customer or end-user. In mod-
ern software engineering work, coding may be: (1) the direct creation of program-
ming language source code; (2) the automatic generation of source code using an
intermediate design-like representation of the component to be built; (3) the auto-
matic generation of executable code using a fourth generation programming lan-
guage (e.g., Visual C++).

* “For much of my life, | have been a sofiware voyeur, peeking furtively at other people’s dirly code. Occasionally, | -
find reol jewel, o well-structured program written in a consistent style, free of Kludges, developed so Ihol eoch
tnmpmys simple and organized, and designed so that the product is easy to change.”

Duvid Parnas

GDWCE‘

Avoid developing an
elegant program that
solves the wrong

problem. Pay particular

affention to the first
preparafion principle.

A wide voriety of links
to coding standards con
be found at
www.literateprog
rameming.com/
fpstyle.html.

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 145

The initial focus of testing is at the component level, often called unit testing.
Other levels of testing include: (1) integration testing (conducted as the system is
constructed); (2) validation testing that assesses whether requirements have been
met for the complete system (or software increment); and (3) acceptance testing
that is conducted by the customer in an effort to exercise all required features and
functions.

A set of fundamental principles and concepts are applicable to coding and test-
ing. They are considered in the sections that follow.

5.5.1 Coding Principles and Concepts

The principles and concepts that guide the coding task are closely aligned program-
ming style, programming languages, and programming methods. However, there are
a number of fundamental principles that can be stated:

Preparation principles: Before you write one line of code, be sure you:

Understand the problem you're trying to solve.

N

Understand basic design principles and concepts.

Pick a programming language that meets the needs of the software to be
built and the environment in which it will operate.

4. Select a programming environment that provides tools that will make your
work easier.

5. Create a set of unit tests that will be applied once the component you code is
completed.

Coding principles: As you begin writing code, be sure you:
1. Constrain your algorithms by following structured programming [BOHOO]
practice.
Select data structures that will meet the needs of the design.

Understand the software architecture and create interfaces that are consis-
tent with it.

w

Keep conditional logic as simple as possible.
Create nested loops in a way that makes them easily testable.
Select meaningful variable names and follow other local coding standards.

Write code that is self-documenting.

N ok

Create a visual layout (e.g., indentation and blank lines) that aids under-
standing.

Validation principles: After you've completed your first coding pass, be sure you:

1. Conduct a code walkthrough when appropriate.

146

PART TWO SOFTWARE ENGINEERING PRACTICE

2. Perform unit tests and correct errors you've uncovered.

3. Refactor the code.

Books on coding and the principles that guide it include early works on program-
ming style [KER78], practical software construction [MCC93], programming pearls
[BEN99], the art of programming [KNU99], pragmatic programming issues
[HUN99], and many, many others.

Generic Task Set for Construction

1. Build architectural infrastructure Code infernal algorithms and related processing
(Chapter 10). functions.
Review the architectural design. Review code as it is written (Section 26.4).
Code and test the components that enable Look for correctness.
architectural infrastructure. Ensure that coding standards have been
Acquire reusable architectural patterns. maintained.
Test the infrastructure to ensure interface Ensure that the code is self-documenting.
integrity. 3. Unit test the component.
2. Build a software component (Chapter 11). Conduct all unit fests.
Review the component-level design. Correct errors uncovered.
Create a set of unit tests for the component Reapply unit tests.
(Sections 13.3.1 and 14.7). 4. Integrate completed component into the architectural
\ Code component data structures and interface. infrastructure. j
5.5.2 Testing Principles
In a classic book on software testing, Glen Myers [MYE79] states a number of rules
that can serve well as testing objectives:
. What are the o Testing is a process of executing a program with the intent of finding an error.
® objectives of ¢ A good test case is one that has a high probability of finding an as-yet undis-
inq?
software testing? covered error.

e A successful test is one that uncovers an as-yet-undiscovered error.

These objectives imply a dramatic change in viewpoint for some software devel-
opers. They move counter to the commonly held view that a successful test is one
in which no errors are found. Our objective is to design tests that systematically
uncover different classes of errors and to do so with a minimum amount of time
and effort.

Davis [DAV95] suggests a set of testing principles' that have been adapted for use
in this book:

10 Only a small subset of Davis's testing principles are noted here. For more information, see [DAV95].

Gpwcss

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 147

Principle #1: All tests should be traceable to customer requirements.'!
The objective of software testing is to uncover errors. It follows that :he most se-
vere defects (from the customer’s point of view) are those that cause the program
to fail to meet its requirements.

Principle #2: Tests should be planned long before testing begins. Test
planning (Chapter 13) can begin as soon as the analysis model is complete. De-
tailed definition of test cases can begin as soon as the design model has been so-
lidified. Therefore, all tests can te planned and designed before any code has been
generated.

Principle #3: The Pareto principle applies to software testing. Stated sim-
ply, the Pareto principle implies that 80 percent of all errors uncovered during test-

In 0 broader software ing will likely be traceable to 20 percent of all program components. The problem,

design ontext el ¢ yyrse is to isolate these suspect components and to thoroughly test them.

that we begin “in the

arge” by focusing on Principle #4: Testing should begin “in the small” and progress toward

software architecture testing “in the large.” The first tests planned and executed generally focus on in-

andend “inthe smal” dividual components. As testing progresses, focus shifts in an attempt to find er-

focusing on compo- o . . .

s, Fortsting, we rors in integrated clusters of components and ultimately in the entire system.

simply reverse the focus Principle #5: Exhaustive testing is not possible. The number of path permu-

ond festourway oot tations for even a moderately sized program is exceptionally large. For this reason,
it is impossible to execute every combination of paths during testing. It is possible,
however, to adequately cover program logic and to ensure that all conditions in
the component-level design have been exercised (Chapter 14).

/ ’ Generic Task Set for Testing

1.

Conduct the unit test.
Correct errors uncovered.

Design unit tests for each software 3. Develop validation strategy (Section 13.5).
component {Section 13.3.1). Establish validation criteria.
Review each unit test fo ensure proper Define fests required to validate software.
coverage. 4. Conduct integrafion and validation tests.
Correct errors uncovered.
Reapply tests as required.

Reapply unit fests.

2. Develop an integration strategy {Section 13.3.2).
Establish order of and strategy to be used for
integration.

Define “builds” and the tests required to
exercise them.
Conduct smoke testing on a daily basis.

\ Conduct regression tests as required.

Conduct high-order fests.
Perform recovery festing (Section 13.6.1).
Perform security testing (Section 13.6.2).
Perform stress testing (Section 13.6.3).
Perform performance testing (Section 13.6.4) .
Coordinate acceptance tests with customer {Section

13.5.3).
J

11 This principle refers to functional tests, i.e., tests that focus on requirements. Structural tests (tests
that focus on architectural or logical detail) may not address specific requirements directly.

148

Gwm’

Be sure that your
customer knows what
to expect before @
soffware increment is
delivered. Otherwise,
you can bet the
customer will expect
more than you deliver.

PART TWO SOFTWARE ENGINEERING PRACTICE

As we noted in Chapter 2, the deployment activity encompasses three actions: de-
livery, support, and feedback. Because modern software process models are evo-
lutionary in nature, deployment happens not once, but a number of times as
software moves toward completion. Each delivery cycle provides the customer
and end-users with an operational software increment that provides usable func-
tions and features. Each support cycle provides documentation and human assis-
tance for all functions and features introduced during all deployment cycles to
date. Each feedback cycle provides the software team with important guidance
that results in modifications to the functions, features, and approach taken for the
next increment.

The delivery of a software increment represents an important milestone for any
software project. A number of key principles should be followed as the team pre-
pares to deliver an increment:

Principle #1: Customer expectations for the software must be managed.
Too often, the customer expects more than the team has promised to deliver and
disappointment occurs immediately. This results in feedback that is not productive
and ruins team morale. In her book on managing expectations, Naomi Karten
[KAR94] states: “The starting point for managing expectations is to become more
conscientious about what you communicate and how.” She suggests that a soft-
ware engineer must be careful about sending the customer conflicting messages
(e.g., promising more than you can reasonably deliver in the time frame provided
or delivering more than you promise for one software increment and then less
than promised for the next).

Principle #2: A complete delivery package should be assembled and
tested. A CD-ROM or other media containing all executable software, support data
files, support documents, and other relevant information must be assembled and
thoroughly beta-tested with actual users. All installation scripts and other opera-
tional features should be thoroughly exercised in all possible computing configura-
tions (i.e., hardware, operating systems, peripheral devices, networking
arrangements).

Principle #3: A support regime must be established before the software is
delivered. An end-user expects responsiveness and accurate information when a
question or problem arises. If support is ad hoc, or worse, nonexistent, the cus-
tomer will become dissatisfied immediately. Support should be planned, support
material should be prepared, and appropriate record keeping mechanisms should
be established so that the software team can conduct a categorical assessment of
the kinds of support requested.

Principle #4: Appropriate instructional materials must be provided to
end-users. The software team delivers more than the software itself. Appropriate

Generic Task Set for Deployment
1. Create delivery media. Establish problem-reporting mechanisms.
Assemble and test all executable Establish problem/error reporting database.
files. 3. Establish user feedback mechanisms.
Assemble and test all data files. Define feedback process.
Create and fest all user documentation. Define feedback forms (paper and electronic).
Implement electronic (e.g., pdf) versions. Establish feedback database.
Implement hypertext “help” files. Define feedback assessment process.
Implement a troubleshooting guide. 4. Disseminate delivery media to all users.
Test delivery media with a small group of 5. Conduct on-going support functions.
representafive users. Provide installation and start-up assistance.
2. Establish human support person or group. Provide continuing troubleshooting assistance.
Create documentation and/or computer support 6. Collect user feedback.
tools. Log feedback.
Establish contact mechanisms {e.g., Web site, Assess feedback.
phone, e-mail). Communicate with users on feedback.
\ Establish problem-logging mechanisms. /

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 149

training aids (if required) should be developed, trouble-shooting guidelines should
be provided, and a “what’s-different-about-this-software-increment” description
should be published.'?

Principle #5: Buggy software should be fixed first, delivered later. Under
time pressure, some software organizations deliver low-quality increments with
a warning to the customer that bugs “will be fixed in the next release.” This is a
mistake. There’s a saying in the software business: “Customers will forget you
delivered a high-quality product a few days late, but they will never forget the
problems that a low-quality product caused them. The software reminds them
every day.”

The delivered software provides benefit for the end-user, but it also provides useful
feedback for the software team. As the increment is put into use, the end-users
should be encouraged to comment on features and functions, ease of use, reliability,
and any other characteristics that are appropriate. Feedback should be collected and
recorded by the software team and used to (1) make immediate modifications to the
delivered increment (if required); (2) define changes to be incorporated into the next
planned increment; (3) make necessary design modifications to accommodate
changes; and (4) revise the plan (including delivery schedule) for the next increment
to reflect the changes.

12 During the communication activity, the software team should determine what types of help mate-
rials users want.

150

PART TWO SOFTWARE ENGINEERING PRACTICE

Software engineering practice encompasses concepts, principles, methods, and
tools that software engineers apply throughout the software process. Every software
engineering project is different, yet a set of generic principles and tasks apply to each
process framework activity regardless of the project or the product.

A set of technical and management essentials are necessary if good software en-
gineering practice is to be conducted. Technical essentials include the need to un-
derstand requirements and prototype areas of uncertainty, and the need to explicitly
define software architecture and plan component integration. Management essen-
tials include the need to define priorities and define a realistic schedule that reflects
them, the need to actively manage risk, and the need to define appropriate project
control measures for quality and change.

Customer communication principles focus on the need to reduce noise and im-
prove bandwidth as the conversation between developer and customer progresses.
Both parties must collaborate for the best communication to occur.

Planning principles all focus on guidelines for constructing the best map for the
journey to a completed system or product. The plan may be designed solely for a
single software increment, or it may be defined for the entire project. Regardless,
it must address what will be done, who will do it, and when the work will be
completed.

Modeling encompasses both analysis and design, describing representations of
the software that progressively become more detailed. The intent of the models is to
solidify understanding of the work to be done and to provide technical guidance to
those who will implement the software.

Construction incorporates a coding and testing cycle in which source code for a
component is generated and tested to uncover errors. Integration combines individ-
ual components and involves a series of tests that focus on overall function and lo-
cal interfacing issues. Coding principles define generic actions that should occur
before code is written, while it is being created, and after it has been completed. Al-
though there are many testing principles, only one is dominant: testing is a process
of executing a program with the intent of finding an error.

During evolutionary software development, deployment happens for each soft-
ware increment that is presented to the customer. Key principles for delivery con-
sider managing customer expectations and providing the customer with
appropriate support information for the software. Support demands advance
preparations. Feedback allows the customer to suggest changes that have busi-
ness value and provide the developer with input for the next iterative software en-
gineering cycle.

